STUDIES IN SESQUITERPENES-LVIII

DEODARDIONE, A SESQUITERPENE DIOSPHENOL AND, LIMONENECARBOXYLIC ACID, A POSSIBLE NORSESQUITERPENE-COMPOUNDS FROM THE WOOD OF *CEDRUS DEODARA* LOUD.[†]‡

s. **KRISHNAPPA and SUKH DEV+j** National Chemical Laboratory, Poona, India

(Rccdud in UK 9 Augut 1975: Accepted **for** *publication 30 Augurt 1977)*

Abstract—Isolation and structure elucidation of a C₁₁ mono-carboxylic acid, apparently a nor-sesquiterpene, and, a sesquiterpene diosphenol from the essential oil of Cedrus deodara Loud. are described.

In continuation of our studies' on the essential oil from the wood of *Cedrus deodara* Loud., we wish to report on the major constituents of the alkali-soluble fraction of the essential oil. The alkali-soluble fraction amounts to $\sim 0.4\%$ of the essential oil and has been investigated earlier (1916) by Roberts,² who reported the presence of an unidentified phenol. This, however, could not be substantiated by later (1922) workers.' We now find that this material is a complex mixture of $NAHCO_x$ -soluble and NaOH-soluble compounds. From each of these fractions we have succeeded in isolating the major component, and have assigned structures 1 (limonenecarboxylic acid) and 2 (deodardione) respectively.

Limonenecarboxylic acid (1)

This compound was isolated from the $NaHCO₃-solu$ ble fraction by chromatography over silica gel. The compound, C₁₁H₁₆O₂ (M⁺, m/e 180), m.p. 108-109°, $[\alpha]_D + 19.1$ ° (CHCl₃), which must be an acid (equivalent wt., 180) from its metbod of isolation shows the following *spcctral/stnctural* features: C=C:y.COOH $(\lambda_{\text{max}}^{\text{BCOH}} 225 \text{ nm}, \epsilon 9250.$ IR: 1688, 1635, 808 cm⁻¹. PMR: 1H, 5.67 ppm, bs), Me=C=C (PMR: 3H, s, 1.65 ppm; $3H, s, 2.19$ ppm), $-C=CH-CH₂$ (PMR: 1H, 5.32 ppm, m).

I From the above functionality and molecular formula, tbe compound must be monocarbocyclic. Gross structure implied in 1. appeared quite attractive as, it not only meets ali the structural requirements, but has apparent relationship with atlantone (3)," the chief oxygenated constituent of the Cedrus deodara essential oil.

tCommunication No. 2167. National Chemical Laboratory. Poona, India

#Present address: Malti-Chcm Research Centre. Nandesari. Vadodua. India

This structure appears to be fully supported' by its mass spectrum, as the major fragments are readily rationalised (see 4, 5) in terms of 1. Furthermore, Econfiguration shown in 1 is apparent from the chemical shift of the $C(7)$ -Me, which occurs at 2.19 ppm, a position consistent only with the cis relationship of Me and the carbonyl function.⁵

A survey of the literature showed that carboxylimonene (1, geometry not implied) has been obtained by two groups^{8.7} of workers by the free radical-addition of CCL to limonene. followed by alkaline hydrolysis. However, both these groups report a m.p. of 95-96°, with no comments on the geometry of tbe product; the latter authors⁷ report $[a]_D + 100^\circ$. At this stage a sample of this acid, syntbesised by essentially the same method, became available through the courtesy of Prof. G. S. Krishna Rao,⁸ for which these authors report m.p. 105-106°, $[\alpha]_D + 18.7$ °. A direct comparison (m.p., m.m.p., UV, IR. PMR) of the acid from Cedruj *deodara* with this sample, established their identity.' Almost at the same time another group of workers¹⁰ reported an unambiguous synthesis of optically pure $(+)$ -methyl ester of **1.** *The* methyl ester of the **acid isolated from the essential oil was identical** (PMR) with the reported data except for its $[\alpha]_{\text{D}}$. Since, a value of $+79^{\circ}$ has been reported for the optically pure ester and our ester has $[a]_D + 25.6^\circ$, the material isolated from *Cedrus deodara*, is, thus considerably racemised."'" These comparisons also establish that 1 represents the absolute stereochemistry of the natural acid.¹³ This also follows from the Absolute Stereochemistry Biogenetic Rule,¹⁴ as the co-occurring $(+)$ -atlantone, with which the C₁₁ acid has obvious relationship, has the absolute stereochemistry^{8.10} shown in 3.

Conceivably, the C_{11} -acid (1) may be a catabolic product¹⁵ of atlantone (3) or another suitable bisabolenebased substrate. The possibility that this acid may be an attefact cannot be entirely **ruled** out, if one considers the possibility of auto-oxidation¹⁶ of atlantone. However, the latter possibility is less likely as **this acid is much Iess** racemixed than the atlantone present **in** the oil.

[‡]Presented at the Eighth I.U.P.A.C. Symposium on the Chem**istry of Natural Products. New Delhi (1972). Abstract Book. D.** , $C-90.$

m/e ¹⁸O(100%) m/a 112(36%)

m/e 135(55 %) m/r 94 (7R%) m/e 45(16%) 7 COOH $\overline{}$ m/e 85(IO%) A m/e 95(62%) 9

Deodardione (2)

This compound was isolated by chromatography of the NaOH-soluble fraction on silica gel: 5.4 kg of the essential oil furnished 103 mg of pure compound. The compound, m.p. $101-102^{\circ}$, $[\alpha]_{\text{D}}+5.2^{\circ}$, analyses for $C_{15}H_{22}O_3$ (M⁺, m/e 250) and from its method of isolation, must be a phenol or an enol. From ita absorption in the UV ($\lambda_{\rm max}^{\rm BLOH}$ 269 nm, ϵ 7120; $\lambda_{\rm max}^{\rm BLOH}$ \sim 300 nm) it is clear that it is a diosphenol" and tbis is also supported by its IR¹⁸ (3350, 1660, 1630 cm⁻¹) and PMR¹⁹ spectra $(CH=C-C=0: 1H, s, 5.90 ppm)$. The PMR spectrum I OH

I shows following additional features: three <u>Me</u>-C-O (3H)

I singlets at 1.40, 1.43 and 1.48 ppm), $Me=C=C (3H, *bs*,$ </u> 1.61 ppm) and Me-C-CH-CH_T (1H, ill-resolved m,

5.30 ppm, $W_H = 8.5$ Hz). These features are quite

m/r 25O(lO%)

m/o ISSCSOW m/e I4l(lOO%)

reminiscent of the PMR spectrum of deodarone¹⁸ (6), which is a constituent of the Cedrus deodara essential oil, and hence, 2/7 appeared attractive as working *structures.*

m/e 68(33%)

In order to adduce chemical evidence in support of the above conclusion, base-catalysed air oxidation²⁰ of deodarone (6) was carried out. The product was separated into NaHCO₃-soluble (50%), KOH-soluble (25%) and neutral (25%) fractions. The KOH-soluble fraction was shown by GLC to consist of two components $(-2:1)$ of which the major component was shown by mixed GLC and PMR to be identical with the diosphenol from the essential oil. This transformation clearly leads to the formulation of deodardione as 2 or 7.

A distinction between 2 and 7 could be readily made on the basis of electron-impact-induced fragmentation. An examination of structures 2 and 7 shows that only structure 2 is capable of undergoing the highly site-specific McLafferty rearrangement²¹ (8) , which should generate ion *m/e* 156. Indeed, the mass spectrum of deodardione shows a fairly strong (50%) signal at m/e 156. The base peak at m/e 141 conceivably arises from this ion by loss of CH, radical (9); this is supported by the presence of a metastable ion peak in the mass spectrum at m/e 127.5 $(calc. 127.4)$. Thus, deodardione can be assigned the structure 2. Apparently, the compound exists completely in the enolic form, as is clear from its PMR spectrum (vide supra).

In order to cull furtber evidence in support of 2, deodardione was cleaved with alkaline $\overline{H}_2O_2^{22}$ and
the resulting dicarboxylic acid (10) purthe resulting dicarboxylic acid (10) ified as its dimethyl ester (11). The product, which had the expected features in its PMR spectrum, was

L

CH₃

 $\mathbf{2}$

examined for its mass spectral fragmentation, in order to identify ions which will be singularly characteristic of structure 11 and cannot be possibly derived from the **alternative l2 based on 7. Of several such fragmentations, only two will be pointed out. As can be seen from fragmentations 13 and 14, the mass spectrum of the derived** dimethyl ester clearly supports structure 2 for the Cedrus *d&m* **diospbenol.**

Like all other bisabolane-based sesquiterpenoids from the essential oil of Cadnrs *deodam,* **deodardione (2) must** also be partially racemic. For remarks on absolute stereochemistry and configuration at C(7), reference is invited to our publication¹⁴ on deodarone.

EXPERIMENTAL

All m.ps and b.ps are uncorrected. Light petrol refers to the fraction b.p. 60-80[°]. Optical rotations were measured in CHCl, at room temp. $(30 \pm 2^{\circ})$ on a Perkin-Elmer polarimeter model 141.

UV spectra were taken on Perkin-Elmer spectrophotometer. model 350, in 95% EtOH. IR spectra were recorded as smears (liquid) or as a mull in Nujol (solids) on a Perkin-Elmer Infracord model 137E. PMR spectra were taken in 10% soln in CCl₄ on a Varian A-60 spectrometer; signals are recorded in δ (ppm) relative to TMS as zero. While citing PMR data the following abbreviations have been used: s, singlet; d, doublet; t, **tripkt;** q, **quartet; m, multipkt;** *b. brad Mass spectra were*

determined on a CEC mass spectrometer, model 21-110B using **an ionizing voltage of 7OcV and a dtrcct inkt system: besides the** molecular ion, eight most abundant ions, above m/e 50 are reported with their relative intensities.

GLC analyses were carried out on "Aerograph" model A-350-B using A1 columns (300 × 0.6 cm) packed with 20% diethylene**glycol polysuccinate on Chromosorb W (60&l mesh): H, was** used as the carrier gas.

 $SiO₂$ -gel for column chromatography $(-100, +200 \text{ mesh})$ was **activated at l2S-130'/6-8 hr and standardised." TLC was carried** out on 0.3 mm layers of SiO₂-gel containing 15% gypsum; visualisation: 1% vanillin in 30% H₃PO₄ aq, followed by heating at \sim 110 $^{\circ}$ /10 min.

Li4noatnecafboxylk **acid (1)**

The essential oil^{**} (2.7 kg) diluted with an equal volume of lig petrol, was extracted first with 10% NaHCO₃ aq (200 ml × 4) and **then with 10% NaOH aq (200 ml x 4).**

The NaHCO₁ extract was washed with ether $(100 \text{ ml} \times 2)$ and then acidified with 30% H₃PO₄ aqueous to pH 2. The liberated acids were taken up in ether (100 ml \times 3), washed with brine and dried (Na₂SO₄). The solvent was flashed off to furnish a product (4.2g), a part (1.421g) of which was chromatographed on SiO₂ gel/IIa (70×2cm) with TLC monitoring (solvent: 10% acetone in CHCI₃) and using increasing amounts (0, 10, 15, 20, 25%) of CHCl₃ in C₆H₆ as eluant. 25% CHCl₃ in benzene **(100 mix 16) eluted 0.6~ of material io which one component**

((TLC, R, 0.42) predominated; all earlier fractions (total material \sim 0.8 g) were complex mixtures. This product (0.6 g) was rechromatographed $(SiO_z-gel/IIa, 70 \times 1.5 cm)$ as before, when 20% CHCl₃ in C_4H_4 (100 ml × 8) gave the product with R_1 0.42 in an essentially pure state, m.p. $97-105^{\circ}$ (0.241 g). The product was recrystallised from light petrol to furnish colorless crystals $(0.148 g)$, m.p. $108-109$ ^o, $\lbrack a \rbrack_{D} + 19.1^{\circ}$ (c, 0.9%). Mass: m/e 180 (M⁺, 100%), 135 (35%), 121 (43%), 113 (47%), 111 (64%), 107 (55%), 95 (62%), 94 (74%), 79 (60%). (Found: C, 73.62; H, 8.89 C₁₁H₁₆O₂ Requires: C, 73.30: H, 8.95%).

Methyl ester (CH₂N₂ method): b.p. 130-135° (bath)/8 mm;
[α]_D + 25.6° (c, 2.5%). PMR: two Me-C=C (3H singlets at 1.65, 2.15 ppm), COOMe (3H, s, 3.63 ppm), -C=CH-CH₂ (1H, m, 5.35 ppm), -C=CH.COOMe (1H, s, 5.62 ppm). (Found: C, 74.35; H, 9.26. C₁₂H₁₈O₂ requires: C, 74.19; H, 9.34%).

Deodardione

The aqueous NaOH soluble extract, described under (1) above, was re-extracted with ether $(100 \text{ ml} \times 2)$ and then acidified with 30% H₃PO₄ aqueous. The hazy soln was saturated with ammonium sulphate and extracted with ether (200 ml \times 3). The combined ether extracts were washed with brine (100 ml \times 2), dried (Na₂SO₄) and freed of solvent to give a product (7.8 g). Two such lots were combined and chromatographed on $SiO₂$ -gel/IIB (70 × 5 cm) with TLC (solvent: 10% acetone in CHCl₃) monitoring and, using increasing amounts (0, 5, 15, 20 and 50%) of CHCl₃ in C_eH₄ as eluant; solvent cuts of 500 ml were made. 5% CHCl₃ in C_aH₄ (500 ml \times 4) eluted 1.2 g (TLC: three spots with R_t 0.84, 0.79 and 0.76) of material in which component with R_1 0.79 predominated; material eluted (100 mg) before this fraction was rejected, while the material $(-12e)$ eluting after this was a complex mixture and failed to give any pure compound. The above 5% CHCl, in C.H. fraction was rechromatographed (SiO_z-gel/IIB, 100 cm × 1.6 cm) as before to finally give a solid fraction (341 mg, m.p. 85-98°), which was twice recrystallized from light petrol to furnish pure 2 (103 mg), m.p. 101-102°, $[\alpha]_D + 5.2^{\circ}$ (c, 1.1%). IR: 3350, 1660, 1630, 1230, 1140, 1032, 1010, 897, 852, 798, 787 cm⁻¹. Mass: mle 250 (M⁺, 10%), 156 (50%), 141 (100%), 95 (40%), 94 (9%), 83 (33%), 79 (9%), 67 (11%), 55 (10%). (Found: C, 72.09; H. 8.85. C₁₅H₂₂O₃ requires: C, 71.97; H, 8.86%).

Base-catalysed oxidation of deodarone

A soln of deodarone (118 mg) in t -BuOH (3 ml) was added to a soln of t-BuOK (84 mg) in t-BuOH (5 ml) and the reaction mixture stirred in oxygen atmosphere at room temp. (25°) and pressure (740 mm). Absorption of $O₂$ almost ceased after absorption of \sim 13.2 ml of the gas (\sim 3 hr). The mixture was diluted with water (10 ml) and acidified with 30% H₃PO₄ aqueous. The product was taken up in ether (15 ml \times 3) and separated into NaHCO₃-soluble (56 mg), KOH-soluble (32 mg) and neutral (38 mg) fractions in the usual manner. The KOH-soluble product was purified by PLC (solvent: 5% CHCl₃ in benzene). The major component showed on GLC two peaks having RRT of 1.0 and 1.7 (2:1).

Oxidative cleavage of deodardione

Deodardione (50 mg) in dioxane (5 ml) was mixed with KOHmethanolic (500 mg KOH in 5 ml MeOH) and heated under stirring to 50°. H_2O_2 -aqueous (30%, 3 ml) was slowly added (15 min) with stirring at the same temp. Stirring was continued for an additional 30 min at 50°, and the mixture diluted with ice-water (10 ml) and acidified with 30% H_1PO_4 aqueous. The product was taken up in ether $(15 \text{ ml} \times 3)$ and worked up in the usual manner to get the crude acid 10 (52 mg). This was converted into the methyl ester by CH_2N_2 in ether and the crude ester (50 mg) passed through a small column of SiO_T gel/IIA, using benzene as eluant. The product (32 mg) was TLC (5% EtOAc in C₄H₄) pure: b.p. 134-136° (bath)/0.5 mm, n³⁰ 1.5108. PMR: Me=C=O (3H singlets at 1.32, 1.38 and 1.41 ppm), Me=C=C (3H, bs, 1.63 ppm), COOMe (two 3H singlets at 3.56 and 3.72 ppm; there is evidence \overline{of} small shoulders on each peak! C-7 diastereoisomer)?, =C=CH-CH₂ (1H, m, 5.29 ppm). Mass: m/e 253 M⁺ - 59, 20%), 180 (65%), 139 (85%), 121 (40%), 115 (80%), 104

(60%), 95 (80%), 73 (100%), 55 (35%). (Found: C, 65.27; H, 8.88. C₁₇H₂₈O₅ requires: C, 65.36; H, 9.03%).

REPERENCES AND NOTES

- ¹⁴G. S. Krishna Rao, Sukh Dev and P. C. Guha, J. Irdian Chem. Soc. 29, 721 (1952); ³T. C. Joseph and Sukh Dev, Tetrahedron 24, 3809, 3841, 3853 (1968); 'R. C. Pandey and Sukh Dev, ibid. 24, 3829 (1968); ⁴S. C. Bisarya and Sukh Dev, *Ibid.* 24, 3861, 3869 (1968); 'B. S. Pande, S. Krishnappa, S. C. Bisarya and Sukh Dev, Ibid. 27, 841 (1971); ^fR. Shankaranarayan, S. Krishnappa and Sukh Dev, Ibid. 33, 885 (1977); *R. Shankaranaryan, S. Krishnappa, S. C. Bisarya and Sukh Dev, Ibid. 33, (1977); ^aR. Shankaranarayan, S. C. Bisarya and Sukh Dev, Ibid. 33, $(1977).$
- ²O. D. Roberts, *J. Chem. Soc.* 109, 791 (1916).
- ³J. L. Simonsen and M. G. Rau, Indian Forest Records 9, 123 (1922); J. Soc. Chem. Ind. 42, A 29 (1923).
- 'See e.g. Ref. 1e.
- ⁵See e.g. L. M. Jackman and S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, pp. 222-225. Pergamon, Oxford (1969); H. N. A. Al-Jallo and E. S. Waight, J. Chem. Soc. (B) 75 (1966); Ref. 1e.
- ⁴S. Israelashvili and E. Diamant, J. Am. Chem. Soc. 74 3185 $(1952).$
- ⁷G. Dupont, R. Dulou and G. Clement, C. R. Acad. Sci. 236, 2512 (1953).
- ⁸J. Alexander and G. S. Krishna Rao, Abstract Book, Eighth IUPAC Symp. Chem. Natural Products p. C-40, New Delhi (1972); Indian J. Chem. 11, 859 (1973).
- We are grateful to Prof. G. S. Krishna Rao for supply of an authentic sample.
- ¹⁰R. J. Crawford, W. F. Erman and C. D. Broaddus, J. Am. Chem. Soc. 94, 4298 (1972).
- ¹¹It may be pointed out here that all bisabolane-based sesquiterpenoids isolated so far from Cedrus deodara Loud. are considerably racemized; e.g. see Ref. 1g.
- ¹²This would also mean that the preparation of Alexander and Rao⁸ is also considerably racemized. Different extent of racemization might account for the difference in the m.ps of the acid of these authors and that of earlier workers.'
- ¹³Obviously, the reference is to be optically active acid, which should be present to the extent of some 30% in the product. This value may not be very reliable as the values of $[\alpha]_D$ reported for the two preparations are in different solvents: EtOH¹⁰, CHCl₃ (present work).
- ¹⁴A. H. Kapadi, R. R. Sobti and Sukh Dev, Tetrahedron Letters 2729 (1965).
- ¹⁵Cf. e.g.: D. R. Adams, S. P. Bhatnagar and R. C. Cookson, J. *Chem. Soc.* Perkin I 1502 (1975). These authors report a C_{17} ketone, based on atlantone, in the essential oil from Cedrus atlantica Manet; however, see Ref. 1g.
- ¹⁶See e.g. autoxidation of $\alpha\beta$ -unsaturated ketones: E. G. E. Hawkins, J. Chem. Soc. 3288 (1955).
- ¹⁷See, e.g. A. Melera and C. R. Noller, J. Org. Chem. 26, 1213 $(1961).$
- ¹⁸See, e.g. W. H. Baarschers, D. H. S. Horn and L. R. F. Johnson, J. Chem. Soc. 4046 (1962).
- ¹⁹C. R. Noller, A. Melera, M. Gut, J. N. Shoolery and L. F. Johnson. Tetrahedron Letters No. 15, 15.
- ²⁰D. H. R. Barton, E. J. Bailey and J. Elks, Proc. Chem. Soc. 214 (1960); B. Camerino, B. Patelli and R. Sciaky, Tetrahedron Letters 554 (1961).
- ²¹H. Budzikiewics, C. Djerassi and D. H. Williams, Mass Spectrometry of Organic Compounds, pp. 155-162. Holden-Day, San Francisco (1967).
- ²²See, e.g. E. Kyburz, B. Riniker, H. R. Schenk, H. Heusser and O. Jeger, Helv. Chim. Acta 36, 1891 (1953).
- ²³R. Hernandez, R. Hernandez, Jr. and L. R. Axelrod, Analyt. Chem. 33, 370 (1961).
- ²⁴The essential oil of Cedrus deodara was obtained from Standard Essential Oil Distillers, Kanpur.